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3. Measurement Theory

This section describes the theory and the mathematical basis for the measurement methods used
for the services outlined in this publication.  The measurement equation is developed and the
generalizing assumptions are discussed.  The measurement equation is then used in estimating the
uncertainties in section 7.  The calibration method using detector substitution is described first in
general, and then, in detail for the measurement services.

3.1 Measurement Equation

Developing the measurement equation is fundamental to understanding the physics and optics
involved with the measurement.  This derivation provides an analytical foundation for the
measurement process and the assumptions and approximations used in the measurement process.
The measurement equation is also fundamental to the analysis of the uncertainty of the
measurement process.  In essence, a detector comparator is a spectroradiometer that measures the
response of different detectors instead of different sources.  Thus, the measurement equation
developed for a general spectroradiometer can be adapted to detector spectral responsivity
measurements.

The measurement equation presented here for spectral responsivity is developed following the
general procedure described in chapter 5 of the Self-Study Manual on Optical Radiation
Measurements [25] and is similar to the development of eq (7.18) in Ref. [26] for spectral
irradiance when using a monochromator-based spectroradiometer.  The measurement equation for
spectral responsivity is

    
V( A,∆λ,λ0 ) = Eλ( x, y,λ0,λ)

A
∫

∆λ
∫ ⋅SΦ ( x, y,λ)⋅dA⋅dλ [U], (3.1)

where     V( A, ∆λ,λ0)  is the output signal (in U units, typically volts or amperes);     Eλ(x, y,λ0,λ)  is
the spectral irradiance function in λ of the comparator system at detector position x,y for a
wavelength setting of λ0;     SΦ (x, y,λ)  is the spectral (radiant flux) responsivity of the detector; A is
the area of the radiant flux beam at the detector (See fig. 3.1.); and ∆λ is the wavelength interval
for which the value of Eλ is not zero (i.e., the full-width bandpass).  This equation is equivalent to
eq (7.1) [26], with some minor changes in the notation, where A and ∆λ are left symbolically in V
to indicate that V depends on how these elements are chosen.

To simplify the analysis, the responsivity SΦ  is assumed uniform throughout A, so,

    SΦ (x, y,λ) = S Φ (λ)  [U·W-1]. (3.2)

Thus, the responsivity SΦ  is no longer dependent on position (x,y) and can be removed from the
area integral

    
V( A,∆λ,λ0 ) = SΦ (λ)⋅ E λ( x, y,λ0 ,λ)

A
∫

∆λ
∫ ⋅dA⋅dλ [U]. (3.3)
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Figure 3.1.  The geometry for detector spectral responsivity measurements.

Evaluating the area integral gives the spectral radiant flux function of the comparator system at
the detector

    
Φ D,λ(λ0 ,λ) = Eλ(x, y,λ0 ,λ)

A
∫ ⋅dA = τ (λ)⋅Φ λ(λ0,λ)  [W], (3.4)

where   Φ λ(λ0,λ)  is the output flux from the monochromator and   τ (λ)  is the transmittance of the
optics (and atmosphere) between the monochromator and the detector (See fig. 3.2.).

Considering only the spectral dependence of the signal for any given A, the measurement equation
can be written

    
V(∆λ,λ0 ) = SΦ (λ)⋅τ(λ)⋅Φ λ(λ0 ,λ)

∆λ
∫ ⋅dλ [U]. (3.5)

Equation (3.5) is the flux equivalent to eq (7.1b) [26].  Introducing the slit-scattering function

    z(λ0 − λ)  to the measurement equation allows the spectral radiant flux function of the
monochromator   Φ λ(λ0,λ)  to be written as the product of two functions (with appropriate
normalization)

    Φ λ(λ0,λ) = z(λ0 − λ)⋅Φ f ,λ(λ)  [W], (3.6)

where the slit-scattering function     z(λ0 − λ)  is dependent only on the difference between the
wavelength setting of the monochromator and the wavelength of the flux and the “spectral flux”
factor   Φ f ,λ is dependent only on the wavelength of the flux.  The factor   Φ f ,λ is the spectral
radiant flux at λ0,   Φ λ(λ0 ) , and is equivalent to the responsivity factor rf introduced in
eq (7.12) [26].  Both the slit-scattering function     z(λ0 − λ)  and the factor   Φ f ,λ can be determined
experimentally, although the latter requires deconvolution from the measured output flux of the
monochromator.

Thus the output signal V can now be written
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V(∆λ,λ0 ) = SΦ (λ)⋅τ(λ)⋅z(λ0 − λ) ⋅Φ f ,λ(λ)

∆λ
∫ ⋅dλ [U]. (3.7)

Equation (3.7) is the flux equivalent to eq (7.13) [26] and is in a form that can be used for finding
the spectral responsivity of a detector.  Thus a measurement equation has been developed for a
spectrally selective source instead of a spectrally selective detector (spectroradiometer).  If the
product     SΦ ⋅τ ⋅Φ f ,λ is approximately constant (or linear) over the spectral range for which

    z(λ0 − λ)  is significant (i.e., within ∆λ) and z is approximately symmetrical with respect to λ0,
eq (3.7) can be written

    
V(∆λ,λ0 ) ≅SΦ (λ0 )⋅τ (λ0 )⋅Φ f,λ(λ0 )⋅ z(λ0 − λ)

∆λ
∫ ⋅dλ [U].                          (3.8)

Equation (3.8) is the equivalent flux version of eq (7.18) [26].  Implicit in this derivation is the
assumption that the slit-scattering function     z(λ0 − λ)  does not change with the wavelength setting
λ0 of the monochromator (that is, the dispersion is the same for all wavelengths) and thus

    z(λ0 − λ)  need only be measured once.  Optical aberrations, scattering, and diffraction are also
assumed to be the same whether a monochromatic beam is varied in λ over the monochromator
bandpass, ∆λ, or λ0 of the monochromator is varied over a beam of fixed wavelength λ.

Equation (3.7) is the measurement equation for an ideal monochromator.  A real monochromator
system has spectrally scattered light (also known as stray light or out-of-band radiation and
hereafter will be referred to as simply stray light) due to imperfections in the monochromator (and
other optics).  This is light from outside the spectral region ∆λ which is scattered into ∆λ and
which contributes to the measured signal.  Adding a stray light term,     Vsl (∆λ,λ0) , to eq (3.8) gives

    
V(∆λ,λ0 ) ≅SΦ (λ0 )⋅τ(λ0 )⋅Φ f,λ(λ0 )⋅ z(λ0 − λ)

∆λ
∫ ⋅dλ+V sl (∆λ,λ0 )  [U], (3.9)

where
    
Vsl (∆λ,λ0 ) ≅ SΦ (λ)⋅z (λ0 − λ)⋅τ(λ)⋅Φ f ,λ(λ)

λ≠∆λ
∫ ⋅dλ [U]. (3.10)

The     Vsl  term in eq (3.9) is typically small for radiometric measurement systems and is normally
ignored in the “routine” measurement equation but is included in the uncertainty estimate
calculations in section 7.1.2.  Equation (3.9) separates the measurement equation into two parts,
the first term represents the in-band signal and the second term represents the out-of-band signal
as indicated by the limits on each integral.

The integral remaining in the first term can be evaluated and combined with the “spectral flux”
factor   Φ f ,λ to give an expression for the flux leaving the monochromator ′ Φ  λ,

    
′ Φ  λ(λ0 ) =Φ f,λ(λ0 )⋅ z(λ0 − λ)

∆λ
∫ ⋅dλ≅Φ λ(λ0,λ)  [W]. (3.11)

Using eq (3.11) the measurement equation (eq (3.9)) can now be written in a form that is easily
applied to the situation of measuring detector spectral responsivity
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    V(∆λ,λ0 ) ≅SΦ (λ0 )⋅τ(λ0 )⋅ ′ Φ  λ(λ0 )  [U]. (3.12)

Before developing a “routine” measurement equation, it is important to reiterate the simplifying
assumptions that were made to develop eq (3.12).

3.1.1 Approximations

The assumptions made in the development of the measurement equation (eq (3.12)) are
summarized and discussed below.  The development of the measurement equation followed the
procedure described in chapter 5 of the Self-Study Manual on Optical Radiation Measurements
[25] and does not include parameters for time, polarization, or incident angle; nor does it include
environmental parameters such as ambient temperature or humidity, corrections for diffraction
effects (departure from geometrical (ray) optics), and nonlinear responsivity.

A key requirement to detector-based radiometry is that detector responsivities are stable over
time.  In general the light from any monochromator system can be polarized, thus the effect of
polarization on the responsivity of the detectors needs to be evaluated.  Generally, this is not a
problem for most photodetectors since the detectors are measured at normal incidence to the
optical axis (and the detector surfaces are isotropic).  The effect of the converging beam angle on
the reflectance (and transmittance) from the detector surface (and window) is small compared to
the variance of repeated measurements and is typically neglected.  However this is not the case
when filters are used with the detectors (e.g., photometers), especially interference filters, where
the transmission is a strong function of the angle of incidence.  Also, the detector area must be
larger than the optical beam so that all of the optical radiation is collected by the detector (i.e., the
detectors are underfilled).  This also requires that the detector Field-of-View (FOV) be larger than
the optical beam from the comparator system.  The detector size and FOV of the typical 1 cm2

photodiodes NIST provides meet these requirements.

Humidity can affect the measurement by changing the transmittance τ of the system and will be
taken into account in the measurement equation developed below.  Humidity can also affect the
detector itself (or its window).  For example, with windowless silicon photodiodes the absorption
of water by the SiO2 surface passivation layer changes the photodiode reflectivity which changes
the responsivity [27].  Typically, for a windowed detector in the laboratory, effects due to water
absorption (onto the detector or window) is not observed.

The temperature variation of the laboratory is small (typically < 1 °C) over the measurement time;
therefore, the responsivity temperature dependence is neglected over most of the spectral region.
When of concern, it can be applied as an additional uncertainty term.

Diffraction effects can be estimated from [28]

    
θ d = 2.44⋅λ

d
 [rad], (3.13)

where   θ d  is the diffraction angle (for the first Airy disk), λ is the longest wavelength of the
system, and d is the diameter of the aperture at the monochromator exit slit (the smallest aperture
in the system). For the Vis/NIR SCF λ ≈2 µm and d ≈1 mm which gives
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θVis/NIR

d = 2.44⋅ 2 µm
1 mm

= 4.88×10 - 3 ≈5 mrad . (3.14)

The Vis/NIR SCF has a focal ratio (f-number or f /#) of ≈9 giving a beam angle of ≈110 mrad
which is over 20 times greater than the diffraction limit.  For the UV SCF (λ ≈0.5 µm,
d ≈1.5 mm, and f /# ≈5) the diffraction effects are even smaller due to the shorter wavelengths.  In
this case, the beam angle is ≈200 times greater than the diffraction limit.  Thus diffraction effects
can be ignored for most UV, visible, and near-IR systems of the type described in this publication.
Likewise, coherence effects are negligible [29] and are ignored in the analysis of these comparator
systems.

The responsivity   SΦ  is assumed uniform throughout the area A of the incident beam on the
detector.  In practice, this is accomplished by reducing A (both mechanically with apertures and
optically via imaging optics) so that   SΦ  is uniform over A.  This limits the amount of flux (power)
that can be delivered to the detector but this does not hinder the responsivity measurements for
typical photodiodes.  Deviations from this approximation are considered as uncertainty terms.

Certain assumptions were made about the system [26] (primarily the monochromator).  One
assumption is that the dispersion remains the same for all wavelengths and that the slit-scattering
function     z(λ0 − λ)  does not change with the wavelength setting λ0 of the monochromator.  These
approximations are not included in the uncertainties because their effect was determined to be
negligible.  This allows     z(λ0 − λ)  to be measured only once for an instrument and used over the
entire spectral range.  Another assumption is that optical aberrations, scattering, and diffraction
are the same whether the λ of a monochromatic source is varied over the monochromator
bandpass ∆λ or whether the monochromator wavelength setting λ0 is varied over a
monochromatic source of wavelength λ.  Also     z(λ0 − λ)  is assumed approximately symmetrical
with respect to λ0 which is the case for the monochromators described in this publication.

The product     SΦ ⋅τ ⋅Φ f ,λ is assumed to be constant (or linear) over ∆λ.  In practice, this is affected
by reducing ∆λ so that     SΦ ⋅Φ f ,λ is constant (or linear) over ∆λ.  This also limits the amount of
flux (power) that can be delivered to the detector, but this is not a hindrance for typical
measurements.  Most measurements are made on broadband detectors using a broadband source
to provide a wide range of measurement wavelengths.  However, this assumption may not be
valid with some arc and discharge sources (primarily used in the UV) that can have strong
spectral variations in output intensity.  Typically, they are small and considered as uncertainty
terms.

The spectrally scattered light is typically negligible for double monochromator systems but not for
many single monochromator systems.  Because the spectrally scattered light is small in magnitude
it will not be used as a correction term in the measurement equation, but it will be evaluated and
considered as an uncertainty term in section 7.
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3.2 Substitution Method

The substitution method uses a standard detector to transfer its responsivity (output divided by
input) to an unknown (test) detector.  This method has a number of advantages that will be
discussed in general and applied specifically to photodetectors.  The measurement equation will
then be developed and the general assumptions and their consequences discussed.  Finally the
measurement equation as applied to the systems described in this publication is developed.

3.2.1 General Substitution Method

The output (signal) Y from a detector (or system) with a linear response in U units, typically volts
or amperes, can be written in general

    Yx = Sx ⋅X x  [U], (3.15)

where Yx is the signal from the detector, Sx is the responsivity of the detector, and Xx is the input
to the detector.  The signal from a standard detector with a known responsivity Ss is given by

    Ys = S s ⋅X s  [U]. (3.16)

Dividing eq (3.15) by eq (3.16) we have

    

Yx

Ys

= S x ⋅X x

S s ⋅X s

. (3.17)

If the input X to each system is assumed to be constant (this is the basis of the substitution
method), solving for the detector responsivity Sx gives

    
Sx = Yx

Ys

⋅S s  [U·input units-1]. (3.18)

Thus, using the substitution method, the standard detector responsivity Ss is scaled by the ratio of
the outputs.  The transfer is accomplished in essence by the standard detector measuring the input
X to the test detector.

3.2.2 Photodetector Substitution

Photodetector responsivity measurements by detector substitution can be made using eq (3.18)
and the following equipment:  a broadband source, monochromator, focusing optics, and standard
detector.  (See fig. 3.2.)  The radiant flux (power) Φ  is the output flux from the source that enters
the monochromator.  The spectral radiant flux Φ λ is the output flux from the monochromator and
τ is the transmittance of any optics (and the atmosphere) between the monochromator and the
detector.  The spectral radiant flux received by the detectors is   Φ D ,λ = τ ⋅Φ λ.
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Optics Φ D,λ=τ · Φ λ

Figure 3.2.  Block diagram of photodetector substitution method.

Using eq (3.18) assumes that the source is stable over the comparison time.  This is generally true
for incandescent sources (i.e., quartz-halogen (QTH) lamps), but less true for arc sources which
are primarily used in the UV.

3.2.3 Substitution Method with Monitor

To eliminate the effect of power fluctuations, a beamsplitter and monitor detector are used.  (See
fig. 3.3.)  Here   Φ D,λ = τbs ⋅τ ⋅Φ λ is the flux received by the detectors and   Φ M,λ = ρ bs ⋅τ ⋅Φ λ is the
flux received by the monitor.  The transmittance and reflectance of the beam splitter are τbs and
ρbs, respectively.  The monitor detector and beamsplitter are assumed to be stable (constant) over
the measurement time.  Thus the monitor records the source power fluctuations and the ratio of
detector to monitor signals will be constant.

Monitor

Beam
Splitter

Monochromator
(λ selection) Φ λΦ

Focusing
Optics τ · Φ λ

Φ D,λ=τbs · τ · Φ λ

Φ Μ ,λ=ρbs · τ · Φ λ

Test

Standard

Source

Figure 3.3.  Block diagram of photodetector substitution method with monitor.

3.2.4 Measurement Equation Applied to the SCFs

The actual measurement equation is now developed.  Dropping the λ notation and changing the
sub- and superscripts for clarity from eq (3.12), it can easily be shown that the signal from a
detector x is

    Vx = Sx ⋅Gx ⋅τx ⋅Φ x + Vd,x  [V], (3.19)

where Sx is the spectral responsivity in A·W-1, Gx is an explicit gain term for a transimpedance
amplifier in V·A-1, τx is the transmittance of any optics (and the atmosphere) between the
monochromator and the detector, Φ x is the output flux from the monochromator in W, and Vd,x is
the dark output (sometimes called the “background signal”) in V, i.e., the signal produced when
no flux is incident on the detector.  (For photodiodes this is caused by their dark current.)  In
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practice Vd,x is found by measuring the signal from the detector with the shutter closed at the exit
slit of the monochromator.  The net signal ∆Vx is the signal due to the radiant (optical) flux
received by the detector

    ∆Vx =Vx − Vd,x = Sx ⋅Gx ⋅τ x ⋅Φ x  [V]. (3.20)

This is the “routine” measurement equation for the substitution method depicted in figure 3.2.
The measurement equation for the “substitution method with monitor” (fig. 3.3) is written by
explicitly including the transmittance τbs and reflectance ρbs of the beam splitter assembly (which
also contains the reflectance of the monitor turning mirror).  The systems described in this
publication simultaneously sample both the detector and monitor.  The signals from the test
detector x and monitor detector mx are

    ∆Vx =Vx − Vd,x = Sx ⋅Gx ⋅τ bsx ⋅τx ⋅Φ x  [U], (3.21)

and     ∆Vmx =Vmx − Vd, mx = S mx ⋅G mx ⋅ρ bsx ⋅τ x ⋅Φ x  [U]. (3.22)

The ratio of these two signals is

    
Rx = ∆Vx

∆Vmx

= Sx ⋅Gx ⋅τ bsx ⋅τx ⋅Φ x

S mx ⋅Gmx ⋅ρbsx ⋅τx ⋅Φ x

, (3.23)

where  τbsx ⋅τx ⋅Φ x  is the fraction of light received by the test detector, and   ρbsx ⋅τx ⋅Φ x  is the
fraction of light received by the monitor.

There is a similar ratio for the two signals from the working standard detector and monitor,

    
Rs = ∆Vs

∆Vms

= S s ⋅Gs ⋅τ bss ⋅τ s ⋅Φ s

Sms ⋅Gms ⋅ρbss ⋅τ s ⋅Φ s

. (3.24)

Dividing eq (3.23) by eq (3.24) (taking the ratio of the ratios) gives

    

Rx

Rs

= Sx ⋅Gx ⋅τ bsx ⋅τx ⋅Φ x

S mx ⋅Gmx ⋅ρbsx ⋅τx ⋅Φ x

⋅S ms ⋅Gms ⋅ρbss ⋅τ s ⋅Φ s

S s ⋅Gs ⋅τ bss ⋅τ s ⋅Φ s

. (3.25)

Looking at eq (3.25), it is now seen that variations or drifts in the source flux or system
transmittance during the time between the measurement of the test detector and the working
standard detector are canceled by the monitor detector.  If the beamsplitter and monitor detector
responsivity and amplifier gain are stable (constant) over the comparison time, other terms cancel,
leaving

    

Rx

Rs

= Sx ⋅Gx

S s ⋅Gs

. (3.26)

Solving eq (3.26) for the test detector spectral responsivity Sx and substituting the signal
measurements into the ratios we have
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Sx = Rx

Rs

⋅Gs

Gx

⋅S s =

Vx − Vd,x

Vmx − Vd, mx

Vs − Vd,s

Vms − Vd, ms

⋅Gs

Gx

⋅S s  [A·W-1]. (3.27)

This is the working form of the measurement equation.  Note that it still has the general form

    
Sx = Yx

Ys

⋅S s  [U·input units-1]. (3.18)

Depending on how the monochromator wavelength scale is calibrated, a correction term may be
needed when the responsivity curves of the test and working standard detectors have different
slopes.  If the centroid wavelength of the bandpass is used to calibrate the monochromator
wavelength scale, then there is no correction term.  But if the peak wavelength of the bandpass is
used, then eq (3.27) requires a correction term.  Thus the measurement equation becomes

    
Sx = Rx

Rs

⋅Gs

Gx

⋅S s + Cbw  [A·W-1], (3.28)

where Cbw is a correction term due to the bandpass of the monochromator and is referred to as the
“bandwidth-effect.”  Like the stray light term, the bandwidth-effect is small for this system and is
ignored in the “routine” measurement equation.  The bandwidth-effect is analyzed in section 7.1.2
as an uncertainty term and included in the uncertainty estimate.

4. Equipment Description

In this section, the Visible to Near-Infrared Spectral Comparator Facility (Vis/NIR SCF) and
Ultraviolet Spectral Comparator Facility (UV SCF) components are described along with the
associated electronics.

4.1 Visible to Near-Infrared (Vis/NIR) Comparator Description

The Visible to Near-Infrared Spectral Comparator Facility (Vis/NIR SCF) is a
monochromator-based system that typically measures the uniformity and absolute spectral
responsivity of photodiodes in the 350 nm to 1800 nm spectral region.  The Vis/NIR SCF
operates from 350 nm to 1100 nm using silicon photodiodes as working standards and from
700 nm to 1800 nm using germanium photodiodes as working standards.

The Vis/NIR SCF uses the direct substitution method and automated translation stages to position
the photodetectors for measurement.  The test detectors as well as the working standards are
fixed onto optical mounts that rotate and tilt for accurate alignment.  A variety of sources can be
selected.  Typically a 100 W quartz-halogen lamp is used as the source in the Vis/NIR SCF.  A
shutter is located just after the monochromator exit slit.  A monitor detector located after the
monochromator measures source fluctuations.  The detectors and the exit optics are enclosed in a


